To find \(\frac{1}{3}\) of \(2\frac{1}{2}\), first change \(2\frac{1}{2}\) to an improper fraction.

\[
2\frac{1}{2} = \frac{5}{2}
\]

Then multiply as you would with two proper fractions.

Check to see if you can divide by the GCF to make the problem simpler. Then multiply the numerators and multiply the denominators.

The problem is now \(\frac{1}{3} \cdot \frac{5}{2}\).

\[
\frac{1 \cdot 5}{3 \cdot 2} = \frac{5}{6}
\]

So, \(\frac{1}{3} \cdot 2\frac{1}{2}\) is \(\frac{5}{6}\).

Rewrite each mixed number as an improper fraction. Is it possible to simplify before you multiply? If so, what is the GCF?

1. \(\frac{1}{4} \cdot 1\frac{1}{3}\)

2. \(\frac{1}{6} \cdot 2\frac{1}{2}\)

3. \(\frac{1}{8} \cdot 1\frac{1}{2}\)

4. \(\frac{1}{3} \cdot 1\frac{2}{5}\)

5. \(1\frac{1}{3} \cdot 1\frac{2}{3}\)

6. \(1\frac{1}{2} \cdot 1\frac{1}{3}\)

7. \(1\frac{3}{4} \cdot 2\frac{1}{2}\)

8. \(1\frac{1}{6} \cdot 2\frac{2}{3}\)

9. \(3\frac{1}{3} \cdot \frac{2}{5}\)

10. \(2\frac{1}{2} \cdot \frac{1}{5}\)

11. \(\frac{3}{4} \cdot 2\frac{1}{2}\)

12. \(3\frac{1}{3} \cdot 1\frac{1}{5}\)